T'SPACE

다채로운 에디터들의 이야기

728x90
반응형

CNN 3

Custom Convnets 특수 제작 Convnet

컨볼루션 신경망(Convolutional Neural Networks, CNNs)의 작동 원리와 설계 방법컨볼루션 신경망(CNN)은 이미지 처리 및 분류 작업에서 매우 강력한 도구로 자리 잡았고CNN은 이미지를 분석하고 특징을 추출하는 능력으로 인해 컴퓨터 비전 분야에서 널리 사용되고 있습니다. 이번 글에서는 CNN이 어떻게 이미지로부터 정보를 추출하고 이를 학습하여 이미지 분류 문제를 해결하는지, 그리고 직접 CNN 모델을 설계하는 방법에 대해 알아보겠습니다.1. CNN의 기본 작동 원리CNN이 이미지를 분석하는 과정은 세 가지 주요 단계로 나눌 수 있습니다: 필터링(Filter), 검출(Detect), 그리고 축소(Condense). 이러한 과정들을 통해 CNN은 이미지로부터 유용한 특징들을 추출해냅..

Stride CNN, 보폭

필터링, 검출, 압축: CNN에서 슬라이딩 윈도우 사용법컨볼루션 레이어로 필터링ReLU 활성화 함수로 검출최대 풀링 레이어로 압축컨볼루션과 풀링 작업은 모두 슬라이딩 윈도우를 사용해 수행됩니다. 컨볼루션에서는 이 윈도우가 kernel_size로 정의되고, 풀링에서는 pool_size로 정의됩니다.컨볼루션과 풀링 레이어에 영향을 미치는 추가적인 두 가지 매개변수는 윈도우가 이동하는 거리인 strides와 입력 이미지의 가장자리에 대해 패딩을 적용할지 여부를 결정하는 padding입니다.from tensorflow import kerasfrom tensorflow.keras import layersmodel = keras.Sequential([ layers.Conv2D(filters=64, ..

CNN - Convolution Neural Networks

컨볼루션 분류기 Convolution Classifier우리의 목표는 신경망이 자연 이미지를 충분히 "이해"하여 인간의 시각 시스템이 해결할 수 있는 동일한 종류의 문제를 해결할 수 있도록 학습하는 방법을 배우는 것입니다.이 작업에 가장 적합한 신경망은 컨볼루션 신경망입니다. (때로는 convnet 또는 CNN이라고도 합니다.)이미지 분류에 사용되는 컨브넷은 컨볼루션 베이스와 밀집 헤드의 두 부분으로 구성됩니다.베이스는 이미지에서 특징을 추출하는 데 사용됩니다. 주로 컨볼루션 연산을 수행하는 레이어들로 구성되지만, 종종 다른 종류의 레이어들도 포함됩니다. (이 부분에 대해서는 다음 레슨에서 배울 것입니다.)헤드는 이미지의 클래스를 결정하는 데 사용됩니다. 주로 밀집 레이어들로 구성되지만, 드롭아웃 같은 ..

728x90
반응형