딥러닝 모델을 설계할 때, 뉴런이 포함되지 않은 특별한 레이어를 추가함으로써 모델의 성능을 향상시킬 수 있습니다. 이번 포스트에서는 그런 레이어 중 두 가지인 Dropout과 Batch Normalization에 대해 알아보겠습니다. 이 두 레이어는 현대적인 딥러닝 아키텍처에서 흔히 사용됩니다.Dropout첫 번째로 소개할 레이어는 과적합(overfitting)을 방지하는 데 도움을 주는 "드롭아웃 레이어"입니다.딥러닝 모델은 때때로 특정 가중치 조합에 의존하여 잘못된 패턴을 학습할 수 있습니다. 이러한 조합은 매우 구체적이어서 하나만 제거해도 모델의 성능이 급격히 떨어질 수 있습니다. 이를 방지하기 위해 드롭아웃을 사용합니다. 드롭아웃은 훈련 중 매 스텝마다 레이어의 입력 유닛 일부를 무작위로 제거하여..